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The role of chain-branching cross-over temperatures in shock-induced ignition of
reactive materials is studied by numerical simulation, using a three-step chain-
branching reaction model. In order to provide insight into shock initiation, the simpler
problem of a spatially homogeneous explosion is first considered. It is shown that for
ratios of the cross-over temperature to the initial temperature, TB , sufficiently less than
unity, the homogeneous explosion can be quantitatively described by a widely used
two-step model, while for TB sufficiently above unity the homogeneous explosion can
be effectively described by the standard one-step model. From the matchings between
these homogeneous-explosion solutions, the parameters of the reduced models are
identified in terms of those of the three-step model. When TB is close to unity, all the
reactions of the three-step model have a leading role, and hence in this case the model
cannot be reduced further. In the case of shock initiation, for TB (which is now the
ratio of the cross-over temperature to the initial shock temperature) sufficiently below
unity, the three-step solutions are qualitatively described by those of the matched
two-step model, but there are quantitative differences due to the assumption in the
reduced model that a purely chain-branching explosion occurs instantaneously. For
TB sufficiently above unity, the matched one-step model is found to effectively describe
the way in which the heat release and fluid dynamics couple. For TB close to unity, the
competition between chain branching and chain termination is important from the
outset. In these cases the speed at which the forward moving explosion wave that
emerges from the piston is sensitive to TB , and changes from supersonic to subsonic
for a value of TB just below unity.

1. Introduction
An important issue from the perspective of safety (storage and handling) of fuels

and explosives is how they respond to shock waves, e.g. how a shock may transition
into a detonation wave. In gases, the initiating shock may be produced by driving a
piston into the fuel or equivalently by the reflection of a weak shock from a confining
wall (Meyer & Oppenheim 1971). In shock initiation experiments on liquid and solid
explosives, the shock is produced by a flier plate which is fired at high velocity into
the explosive from a gas gun (e.g. Gustavsen et al. 2002; Sheffield, Engelke & Alcon
1989).

The majority of work on the theory of shock initiation has employed a standard one-
step Arrhenius reaction model (Sharpe & Short 2004; Short & Dold 2002; Nikiforakis
& Clarke 1996; Singh & Clarke 1992; Blythe & Crighton 1989; Kapila & Dold
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1989; Jackson & Kapila 1985). For this model, the shock-to-detonation transition
mechanisms are well understood from these analytical and numerical studies. The
evolution begins with an induction stage, during which the shocked material remains
close to the initial state but evolves due to a small amount of heat release. This
induction stage is then followed by a thermal runaway event at the piston, which
signals that the material there subsequently burns rapidly to complete reaction. This
thermal runaway event is just the first in a sequence of local explosions, since the
induction stage evolution sets up a gradient in induction times due to the passage of
the shock. The point of thermal runaway hence moves away from the piston face as
each particle explodes in turn. A thin explosion zone thus subsequently propagates
away from the piston. This reaction wave consists of part of a quasi-steady weak
detonation (a shockless wave which is supersonic throughout in its own rest frame),
possibly followed by an unsteady region and a quasi-steady subsonic fast flame. As
the activation energy increases, the weak detonation part of the reaction wave grows,
and in the high-activation-energy asymptotic limit, it consists entirely of the weak
detonation. The wave has an initially infinite speed but decelerates very rapidly. Once
it reaches the Chapman–Jouguet (CJ) speed, a sonic point appears at the rear of
the weak detonation. This results in a secondary shock forming, which subsequently
accelerates and propagates rapidly through the remaining part of the weak detonation
ahead, transforming it into a strong detonation. As the activation energy is increased,
the point where secondary shock and subsequent strong detonation appear rapidly
moves closer to the piston. In the high-activation-energy limit they appear extremely
close to the piston.

Although the one-step model shock-initiation picture is complete, such a model
cannot properly describe how the heat is released in many real explosives, in which
the chemistry is governed by chain-branching reactions. The chemistry in these fuels
typically gives reaction histories consisting of a definite induction stage followed by a
main reaction stage in which the majority of heat is released. The ratio of the time or
length scales of these two stages depends both on the fuel and on the initial conditions.
The one-step model cannot reproduce such reaction structures, except when the main
reaction zone is exponentially short in comparison to the induction stage. Importantly,
it has been shown that the evolution process can depend qualitatively on the reaction
zone structure and hence the choice of reaction model (Sharpe 2002).

For simple chain-branching models, early time analyses (Sharpe 2002; Dold &
Kapila 1991) show that, after an induction time, a chain-branched runaway occurs at
the piston. The thin chain-branching explosion region subsequently propagates away
from the piston at subsonic speeds, compared to the supersonic thermal runaway
wave in the one-step model. The result is that, when chain-branching dominates in
the explosion region, the shock initiation evolution never involves supersonic weak
detonations which are the main feature in the one-step case. Sharpe (2002) then
investigated the complete evolution using a very simple two-step chain-branching
chemistry model, which consists of a thermally neutral induction time step followed
by a state-insensitive exothermic main heat release stage. Sharpe (2002) found that,
subsequent to the chain-branching explosion at the piston, the solution consists of
three regions, which are, as one moves back from the shock to the piston: (i) an
undisturbed induction region, (ii) an unsteady, disturbed induction region, which
terminates with the instantaneous chain-branching explosion, and (iii) a subsonic
fast-flame main reaction wave.

The subsequent evolution of this three-stage structure depends sensitively on the
ratio of the main reaction time to the initial induction time (Sharpe 2002). For rapid
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main reaction stage times, a secondary shock forms at the head of the disturbed
induction zone region, very quickly and near the piston. This shock then rapidly
amplifies, coupling with the fast-flame reaction zone behind it, to form a strong
detonation. For more moderate main reaction times (comparable with the initial
induction time), a secondary shock forms later and further from the piston. While
this secondary shock is still amplified by the following exothermic reactions, it may
not have time to reach a fully developed detonation before the secondary shock
collides with the leading shock. For long main reaction times, no secondary shock
forms and instead the reaction zone couples directly with the leading shock, so that
the growth occurs smoothly and principally at or just behind the shock.

In this paper, shock initiation is investigated using a more realistic three-step
chain-branching chemistry model. This is the simplest model that contains all the
main features of chain-branching chemistry, including the concept of cross-over
temperatures (which the two-step model lacks). The three-step model has been used
in several studies of ignition and detonation problems (Blythe, Kapila & Short 2005;
Maflahi 2004, 2005; Short & Sharpe 2005; Ng & Lee 2003; Short, Kapila & Quirk
1999; Short & Quirk 1997; Dold & Kapila 1991). The main purpose of this paper
is to determine if and how the solutions obtained using the three-step model differ
from those using the simpler one-step and two-step models, and to examine the role
of the chain-branching cross-over temperature in shock-induced ignition.

Previous studies have also shown that, for a given chemistry model, the solutions
of the simpler homogeneous (constant-volume) explosion problem provide a number
of predictions and fundamental insights into the shock initiation problem. Hence
we also consider the homogeneous explosion for the three-step model in order to
provide understanding of the dependence of shock initiation on the chain-branching
crossover temperature. Furthermore, our homogeneous explosion study also shows
how the asymptotic results given in Blythe et al. (2005) and Maflahi (2004, 2005) for
the three-step model can be used to directly relate the model parameters to those
of one- or two-step models, at least within particular regimes of the value of the
chain-branching cross-over temperature.

The plan of the paper is as follows: the three-step model is summarized in § 2;
homogeneous explosions are considered in § 3; shock-initiation results are given in
§ 4; § 5 contains the conclusions.

2. The three-step reaction model
Here we briefly summarize the three-step kinetics model which is described in detail

in Short & Quirk (1997). The three reaction stages are as follows: (i) a chain-initiation
step, in which fuel, F, is converted slowly into free radicals, Y, at a rate of reaction RI ;
(ii) a chain-branching step in which the radicals combine with fuel to produce more
radicals, F+Y→2Y, at a rate RB; (iii) a chain-termination or recombination step in
which the radicals are converted into reaction products, P, at rate RC . The reaction
rates are assumed to be of Arrhenius form,

RI = kIf exp

(
−θI

T

)
, RB = kBfyρ exp

(
−θB

T

)
, RC = kCy exp

(
−θC

T

)
, (2.1)

where kI , kB and kC are the chain-initiation, -branching and -termination rate
constants, respectively, θI , θB and θC are the activation energies, T is the temperature,
ρ the density and f and y the fuel and radical mass fractions respectively (the mass
fraction of products, z, is then given by conservation of mass as z = 1 − f − y).
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In any real chemical reaction, there will be multiple individual initiation, branching
and re-combination reactions occurring. It is important to note that in the simplified
three-step model, it is assumed that all the chain-initiation reactions can effectively
be described by (or combined into) a single global initiation step, and similarly for
the branching and termination reactions (Blythe et al. 2005). The important point for
high-speed reactive flow problems is to correctly capture how the heat is released and
couples to the flow, rather than how any individual reaction proceeds.

We make the standard further simplifying assumptions (Blythe et al. 2005; Maflahi
2005; Short & Sharpe 2005; Ng & Lee 2003; Short et al. 1999; Short & Quirk
1997) that the termination step is rate independent, θC = 0, since typically chain
termination is only weakly temperature dependent (Short & Quirk 1997), and that
the initiation and branching steps are thermally neutral (in reality the initiation steps
tend to be only weakly endothermic (Short & Quirk 1997)). Note that this second
assumption is a good approximation for hydrogen mixtures, whereas in hydrocarbons
such as acetylene, the branching steps may also release significant heat (Varatharajan
& Williams 2001). We intend to investigate how exothermic branching affects the
solutions as an extension in the future, but here we consider only the basic three-step
model properties. Hence all of the chemical heat, Q, is released in the termination
step.

The rate constants, kI and kB , are then re-defined in terms of cross-over temperatures,
TI and TB , by

kI = kC exp

(
θI

TI

)
, kB = kC exp

(
θB

TB

)
, (2.2)

so that the reaction rates can be rewritten as

RI = kCf exp

[
1

εI

(
1

TI

− 1

T

)]
, RB = kCfyρ exp

[
1

εB

(
1

TB

− 1

T

)]
, RC = kCy,

(2.3)

where here we have also defined the standard inverse activation energies, εI = θ−1
I ,

εB = θ−1
B . It is now clear that the chain-branching cross-over temperature, TB , is the

temperature at which the branching rate multiplier becomes equal to that of the
termination rate. Similarly TI is the temperature at which the initiation rate multiplier
is equal to that of the termination step. Finally, we make the standard realistic
assumptions (Short & Quirk 1997) that TB < Tad <TI (where Tad is the adiabatic
explosion temperature) and εI � εB (the activation energy of the initiation step is
typically much larger than that of the branching step).

3. Homogeneous explosion
Here we briefly examine and review the homogeneous (spatially uniform) constant-

volume explosion solutions of the three-step model, especially the dependence on
TB . Homogeneous explosion solutions can provide useful a priori insights into the
parametric dependences of the shock initiation solutions (Short & Sharpe 2004). We
then show that the homogeneous-explosion solutions allow the three-step model to be
directly identified with the simpler (reduced) one-step or two-step models in certain
parameter regimes. Given these matchings between models, a number of further
predictions of the shock initiation solutions can then be obtained from the previous
one-step and two-step model studies of Sharpe & Short (2004) and Sharpe (2002)
(see § 4.1).
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Figure 1. Induction time (time to f =0.5) of the homogeneous explosion (logarithmic scale)
against TB . Also shown is the leading-order high-activation-energy asymptotic induction times
for TB − 1 = O(1) < 0 (dashed line) and TB − 1 = O(1) > 0 (dotted line).

For the spatially uniform, constant-volume scenario, the (dimensionless) governing
equations are simply

df

dt
= −RI − RB = −f exp

[
1

εI

(
1

TI

− 1

T

)]
− fy exp

[
1

εB

(
1

TB

− 1

T

)]
, (3.1a)

dy

dt
= RI + RB − RC = f exp

[
1

εI

(
1

TI

− 1

T

)]
+ fy exp

[
1

εB

(
1

TB

− 1

T

)]
− y, (3.1b)

dT

dt
= βy. (3.1c)

Here t is a dimensionless time based on the termination-rate time scale, defined
by t = k̃C t̃ (where a tilde denotes a dimensional quantity). The temperature and the
(constant) density have been scaled with their values in the initial state, i.e. T = T̃ /T̃0,
where the zero subscript denotes initial values. Since only the termination step releases
heat in the basic three-step model, the temperature is governed simply by (3.1c), where
β = (γ −1)Q, γ is the ratio of specific heats and Q is the dimensionless heat of reaction.
Adding equations (3.1a)–(3.1c) and integrating gives

T = 1 + β(1 − f − y) = 1 + βz. (3.2)

Thus the adiabatic (final, all products) temperature is Tad = 1 + β .
The initial conditions are f (0) = 1, y(0) = 0 and T (0) = 1. We define

eB = exp

[
1

εB

(
1

TB

− 1

)]
, eI = exp

[
1

εI

(
1

TI

− 1

)]
, (3.3)

which are the initial values of the branching and initiation rate multipliers, respectively.
Throughout this paper, the following parameter set has been used:

εI = 1/15, εB = 1/5, TI = 3, Q = 4, γ = 1.4, (3.4)

and only the main parameter, TB , varied.
Figure 1 shows the time at which the fuel fraction reaches a half (which we use

here as a measure of the induction time, denoted by tind) as a function of TB . From
figure 1 it can be seen that there are three different TB regimes of the induction time,
and that the induction time varies most rapidly for initial temperature close to TB .

Figure 2 shows the complete numerical solutions of the homogeneous-explosion
problem for various TB . Figure 2(a) shows that for TB = 0.6, the overall reaction
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Figure 2. Fuel, f (solid lines), radical, y (dashed lines) and product, z =(T − 1)/β (dotted
lines) mass fraction histories for the homogeneous explosions with (a) TB = 0.6, (b) TB = 0.8,
(c) TB = 1.0, (d) TB = 1.2 and (e) TB =1.4.

structure has three distinct stages. The first stage consists of an induction zone, and is
followed by a chain-branching explosion zone in which the fuel is completely depleted
and converted rapidly into radicals. Only a very small amount of products (and
hence heat) is generated within this explosion region. Note that, in this paper, by
‘explosion region’, we are referring to the thin region where the fuel is consumed in a
self-accelerating manner. Finally there is a chain termination stage where the radicals
are converted into products and where the heat is released. The induction zone time
is short compared to that of the termination stage. As TB is decreased below 0.6, the
induction stage becomes exponentially shorter, as can be seen in figure 1, while the
mass fraction of radicals at the peak value rapidly approaches unity (Maflahi 2004).

As TB begins to approaches unity from below, however, the distinct three-stage
structure seen for lower values begins to break down. For example, figure 2(b) shows
the structure for TB = 0.8. In this case, while the induction zone is still virtually
thermally neutral, there is a noticeable buildup of products within the explosion
region. Hence there is now a distinct overlap of the branching and termination
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zones. The radical mass fraction peaks at y = 0.644 at which point z = 0.294. Thus
the explosion region is no longer mainly chain branching in character, but is also
partially thermal. For TB = 0.8, the induction time and the termination-zone time
scale are now comparable.

As TB is further increased towards unity from below, the branching and termination
regions overlap more and the radical peak decreases, while the induction zone rapidly
becomes long on the termination time scales. Figure 2(c) shows the reaction structure
when TB = 1. In this case it can be seen that the induction zone is no longer thermally
neutral, since a small decrease in the fuel fraction occurs before the explosion region,
with a concomitant increase in products (and hence temperature), because now the
termination reaction consumes radicals as they are produced by the initiation step.
In the explosion region itself, there is a clear competition between branching and
termination, with significant amounts of both radicals and products being produced.
The radical and product fractions are comparable when the radicals peak. By the time
all the fuel is consumed in the explosion region, about 80% of the mass is products.
Hence now the explosion region has a very definite mixed chain-branching/thermal
nature. In this case the induction zone is long compared to the overall termination
length scale.

Figures 2(d) and 2(e) show the solutions for cases where TB is larger than unity
(TB =1.2 and 1.4, respectively). The induction zone is now very long compared to
the termination zone. Indeed, note from figure 1 that the induction time initially
increases exponentially rapidly as TB is increased above unity. In these cases the
structure consists of a thermally evolving induction stage, in which there is a more
significant buildup of products (and heat) and depletion of fuel than for TB =1.0.
The explosion region is now almost purely thermal in nature, with only a very small
amount of radicals being produced. The radical production occurs near the end of
the explosion, only once the local temperature reaches and then exceeds TB . Thus the
solution now resembles more a two-stage structure, consisting of a weakly evolving
induction stage followed by a thermal explosion in which fuel is converted mainly into
products. As TB increases, the peak radical fraction reduces further. The induction
time continues to increase with TB initially, but then becomes independent of TB for
large enough values (figure 1). This is because, for sufficiently large TB , the branching
rate is exponentially small compared to the termination rate at all times, and hence
the branching rate parameters have virtually no role in the evolution.

3.1. TB < 1: matching to the two-step model

The three-stage structure and its TB dependence, when TB is sufficiently below unity,
is confirmed by a high-activation-energy asymptotic analysis for the case when
TB − 1 = O(1) < 0 as εB → 0 (Blythe et al. 2005; Maflahi 2004). The leading-order
asymptotic structure in this case can be summarized as follows. The first asymptotic
region is an induction stage (Region I), in which

f = 1 +
eI

eB

(1 − exp(τ )), y =
eI

eB

(exp(τ ) − 1),

T = 1 + β
eI

e2
B

(exp(τ ) − τ − 1), τ = eBt,

⎫⎪⎪⎬
⎪⎪⎭ (3.5)

and thus in which f , y and T remain exponentially close to their initial values (but
with the T perturbation being of smaller order than the mass fractions). The second
asymptotic region (Region II) is the chain-branching explosion stage where fuel is
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converted rapidly into radicals, and in which

f =
1

1 + exp(τ̂ )
, y =

exp(τ̂ )

1 + exp(τ̂ )
, T = 1 +

β

eB

ln(1 + exp(τ̂ )), τ̂ = eBt − ln

(
eB

eI

)
.

(3.6)

Note the temperature perturbation still remains exponentially small in this region,
while the mass fraction perturbations are O(1). The third and final asymptotic
region (Region III) is the chain-termination stage where the radicals are converted to
products and heat. In this region f is exponentially small, and

y =

(
eB

eI

)1/eB

exp(−t), T = 1 + β

(
1 −

(
eB

eI

)1/eB

exp(−t)

)
. (3.7)

The asymptotic theory predicts a leading-order induction time (time to the chain-
branching explosion) as

tind =
1

eB

ln

(
eB

eI

)
= exp

[
1

εB

(
1 − 1

TB

)]{
1

εB

(
1

TB

− 1

)
− 1

εI

(
1

TI

− 1

)}
. (3.8)

The leading-order asymptotic solution gives excellent quantitative agreement with
the full numerical results for finite activation energies, including the induction time,
even for moderate values of the branching activation energy, such as the value of
εB =1/5 used here (Blythe et al. 2005; Maflahi 2004). This is shown to be the case in
figure 1, where the asymptotic induction times agree quantitatively with the numerical
values provided TB is in the relevant regime (sufficiently below unity). The leading-
order asymptotics are quantitatively accurate because the correction term at the next
order is exponentially small and thus numerically negligible (Blythe et al. 2005).

This analytical structure confirms that the explosion region is mainly chain
branching in character, while the temperature has a two-stage structure. This indicates
that a reduced two-step model should be able to describe well the way in which the
heat is released in the three-step model. Indeed, such two-step models were developed
precisely to mimic the main features of this class of reaction structure (e.g. Short
2001). Here we examine how the parameters of the two-step model used in Sharpe &
Short (2002), Sharpe (2002), Short & Sharpe (2002), Short (2001) and Short & Bdzil
(2003) can be set so that the way in which the heat is released precisely matches that
of three-step model in the TB − 1 =O(1) < 0 regime. This two-step model begins with
a thermally neutral induction stage,

dξ

dt
= k∗

1 exp

(
− 1

ε2T

)
= k1 exp

[
1

ε2

(
1 − 1

T

)]
, (3.9)

where ξ is an induction time parameter, such that the end of the induction time for
a particle occurs when ξ = 1 (with ξ =0 in the completely unburnt state), k∗

1 is a rate
constant and ε2 is an inverse activation energy. Here we have also defined a rescaled
rate constant, k1, by k1 = k∗

1 exp(−1/ε2) in order to give a form of the rate consistent
with Sharpe & Short (2002) and Sharpe (2002).

When the induction time ξ = 1 is reached a purely chain-branching explosion is
assumed to occur, where the fuel is instantaneously converted into radicals, i.e. the
chain-branching explosion region is assumed to be infinitely thin in the two-step
model. Hence once the induction time is over a main reaction (termination) stage
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begins. This stage is governed by

dλ

dt
= k2(1 − λ)H (ξ ), (3.10)

where λ is a reaction progress variable (with λ=0 at the start of the second step
and unity in the completely burnt (all product) state), k2 is the rate constant and H

is the Heaviside function (so that the main reaction stage does not begin until the
end of the induction stage). As in the three-step model, all the heat is released in
the termination stage. The temperature is thus given by T =1 + βλ. Note that equ-
ations (3.9) and (3.10) have been non-dimensionalized in the same way as the three-
step model, hence k1 = k̃1/k̃C , etc. The main parameter of the two-step model is
k = k2/k1 (Sharpe & Short 2002; Sharpe 2002; Short & Sharpe 2002; Short 2001;
Short & Bdzil 2003), which determines the ratio of the induction time to the main
reaction time.

For the two-step model, the homogeneous explosion has an analytic solution:

ξ = k1t, t
2step
ind =

1

k1

, λ = 1 − exp(k − k2t). (3.11)

The induction time, ξ , is a lumped variable and hence cannot be readily identified
with f or y in the three-step model. However, matching the homogeneous induction
time with that of the three-step model in equation (3.8) gives

k1 = k∗
1 exp

(
− 1

ε2

)
= exp

[
1

εB

(
1

TB

− 1

)]{
1

εB

(
1

TB

− 1

)
− 1

εI

(
1

TI

− 1

)}−1

.

(3.12)

The induction times between the two models can thus be matched by choosing

ε2 = εB, k∗
1 = kB

{
1

εB

(
1

TB

− 1

)
− 1

εI

(
1

TI

− 1

)}−1

. (3.13)

The activation energy in the two-step model is thus identified to be precisely that of
the chain-branching reaction step, while the two-step induction-stage rate constant
is a combination of both initiation and branching effects, consistent with the fact
that the two-step induction stage is assumed to represent a lumped combination of
initiation and branching reactions (Short 2001).

The chain-branching explosion zone (Region II in the three-step structure) is
replaced by an instantaneous change of fuel into radicals in the two-step model. In
the termination region, given the matched values for ε2 and k∗

1 above, the temperatures
in the main reaction stage of the two models can then be matched by choosing k2 = 1,
cf. equations (3.11) and (3.7). One then also notes that the reaction progress variable
λ is simply the product mass fraction, z, of the three-step model. Importantly, given
these parameter matches, the main parameter of the two-step model, k, is determined
in terms of TB by

k =
1

eB

ln

(
eB

eI

)
. (3.14)

Figure 3 shows comparisons between the temperature histories for the two-step
and three-step models given the parameter matchings above, for the cases TB = 0.6
and TB = 0.8, for which k = 0.476 and 3.22, respectively. For TB = 0.6 the agreement is
quantitatively excellent. The only difference can be seen by close inspection near the
chain-branching explosion region. For the two-step model, there is a discontinuity of
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Figure 3. Temperature histories from the two-step (solid lines) and three-step (dotted lines)
model homogeneous explosion solutions for (a) TB = 0.6 (k = 0.476) and (b) TB = 0.8 (k = 3.22).
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Figure 4. Two-step model parameter k as a function of TB .

the temperature gradient at the induction time, due to the Heaviside switch in the heat
release rate of equation (3.10). For the full three-step model, however, while the main
chain-branching explosion region is thin, it is nevertheless temporally distributed, so
that while there is a rapid change in the temperature gradients here, the temperature
evolution is nevertheless smooth. For TB = 0.8, the agreement between the two models
is still qualitatively good, but the induction times no longer match. This is because
for this value of TB the explosion region in the three-step model is no longer mainly
chain-branching in nature as assumed in the two-step model, but is also beginning
to involve thermal effects. Hence one is moving outside the regime in which the
assumptions and approximations inherent in the purely chain-branching two-step
model are valid. In other words, reduction of the three-step model to the two-step
model is only valid in the regime TB − 1 =O(1) < 0.

However, the above matching between the two-step and three-step model also
reveals a further important point. In studies using the two-step model, typically three
regimes are considered (Sharpe & Short 2002; Sharpe 2002; Short 2001; Short & Bdzil
2003): k � 1, k = O(1) and k � 1, corresponding to the main reaction (termination)
time/length scale being long, comparable and short, respectively, on the induction
time/length scale.

Figure 4 shows k as a function of TB for the parameter set (3.4). As can be seen,
although k can be made arbitrarily small by decreasing TB , even when pushing the
two-step matching well beyond its limit of applicability to TB =1.0, k remains less than
10. Hence the large-k limit, where the induction time is long, cannot be reached within
the context of the three-step model. Even for general parameter values, equation (3.14)
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shows that in the regime where the two-step model is applicable, TB −1 = O(1) < 0, k is
always small since eB is exponentially large. Even pushing TB towards unity such that
eB =O(1) and where the validity of the two-step model breaks down, equation (3.14)
shows that then k = O(1/εI ). Thus extremely large initiation activation energies (of
the order of 100 to 1000) would be required to obtain values of k sufficiently large,
e.g. the k � 1 values used in Sharpe (2002) and Sharpe & Short (2002), such that the
termination stage is short compared to the induction stage. Thus the large-k regimes
considered in Sharpe (2002), Short & Sharpe (2002), Short (2001) and Short & Bdzil
(2003) are in fact not achievable within the context of the three-step model.

Indeed, figure 2 shows that in order to achieve induction zones which are long
compared to the termination zone, TB needs to be very close to or above unity.
However, in these cases termination (and hence thermal) effects are important both
within the induction stage and the explosion stage, and hence cannot be described by
the purely chain-branching two-step model. These regimes are considered next.

However, this does not preclude the possibility of the large-k regime being
achievable for chemistry models more complex than the three-step one. For example
one could attempt to apply such a model to mixtures like methane which have very
short main reaction stages. However, in such a case, a one-step model with sufficiently
high activation energy could also reproduce the heat release structure. Given that
the shock initiation dynamics of a two-step and one-step description are qualitatively
different, care would have to be taken in deciding on the choice of model.

3.2. TB > 1: matching to the one-step model

For TB sufficiently above unity, we have seen that the explosion is mainly thermal
in nature, with very little chain branching occurring. The relevant regime in the
asymptotic analysis is TB − 1 = O(1) > 1 as εI → 0. In this case the leading-order
asymptotic induction time is (Blythe et al. 2005; Maflahi 2005)

tind =
εI

βeI

=
εI

β
exp

[
1

εI

(
1 − 1

TI

)]
, (3.15)

which now depends only on the chain-initiation rate parameters and is thus
independent of those of the branching rate. This predicts an induction time which
is now exponentially large compared to the termination stage time, since eI remains
exponentially small. Within this induction stage, the leading-order asymptotics predict
that y is exponentially small, while the fuel mass fraction and temperature vary by
an O(εI ) amount: the leading-order solutions give

f = 1 +
εI

β
ln(1 − βτ ), T = 1 − εI ln(1 − βτ ), τ =

eI

εI

t (3.16)

(Blythe et al. 2005; Maflahi 2005).
The asymptotic induction time (3.15) is compared with the numerical finite-

activation-energy values in figure 1. In agreement with the asymptotic predictions,
the induction time does become independent of TB for large enough values. However,
the finite-activation-energy induction time for TB sufficiently larger than unity is
not in quantitative agreement with what the leading-order high-activation-energy
asymptotics predict. This is because the higher-order correction is O(εI ) (Blythe
et al. 2005). Hence, unlike the TB − 1 = O(1) < 0 case where the correction term is
negligibly small, for TB − 1 = O(1) > 0 the leading-order asymptotic solution is not
quantitatively accurate for typical values used in finite-activation-energy calculations.
For the one-step model, these differences between leading-order asymptotics and
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finite-activation-energy solutions produce profound differences in the shock initiation
scenario (Sharpe & Short 2004), and hence we expect the same to be true for the
three-step model in this TB regime.

However, the leading-order solution is still useful: note that the three-step induction-
stage asymptotic solutions and induction time given in equations (3.15) and (3.16)
are of precisely the same form as those of the high-activation-energy asymptotic
solutions of the one-step model given in Kapila (1983). This suggests that, at least in
the induction phase, the three-step model can be effectively described by the one-step
model. Furthermore, the asymptotic analyses indicate how the parameters of the
one-step model can be chosen so that the homogeneous-explosion structure matches
that of the three-step model. The one-step model consists of a single reaction rate
which converts fuel directly into products and releases the heat, given by

df

dt
= −k∗f exp

(
− ε

T

)
, (3.17)

where k∗ is the rate constant, and ε the activation energy. For this model the leading-
order induction time is (under the scalings used to non-dimensionalize the three-step
model)

tind =
ε

βk∗ exp

(
1

ε

)
. (3.18)

(Kapila 1983). The one-step and three-step asymptotic induction times (3.15) and
(3.18) can be matched if one makes the identifications

ε = εI ,
1

k∗ exp

(
1

ε

)
= exp

[
1

εI

(
1 − 1

TI

)]
⇒ k∗ = kI . (3.19)

Thus the leading-order induction solutions of the two models match if one identifies
the rate constant and activation energy of the one-step model precisely as those of
the chain-initiation step in the three-step model.

Given these parameter matches, the leading order asymptotic solutions of the
one-step model in the induction stage also match those of the three-step model in
equation (3.16) (Maflahi 2005). Furthermore, the next asymptotic region in both cases
also match. This second region is a thermal explosion layer which occurs at t = tind

(Blythe et al. 2005; Maflahi 2005; Kapila 1983). For example, in both models the
thermal explosion region occurs on the time-scale τ̂ = −εI ln(1 − βeI t/εI ) (Maflahi
2005). Hence the asymptotic matching shows that in fact, in the first two asymptotic
stages, the three-step model can be reduced to a single step with the same form as
the initiation step but which also releases the heat.

What happens subsequently in the three-step asymptotic structure depends on
whether the adiabatic (final) explosion temperature Tad is greater or less than TB

(Maflahi 2005). If Tad < TB then the branching rate remains exponentially small
throughout and the asymptotic structure is identical to that of the one-step model
given the above parameter matches (Blythe et al. 2005). In the case that TB <Tad, the
chain-branching rate comes into the leading-order balance once T reaches TB and
hence a small chain-branching explosion also occurs within an inner layer of the explo-
sion region (J. Billingham, private communication), as is seen in figures 2(d) and 2(e).

However, the asymptotic solutions on which the parameter matching between the
models is based are not quantitatively predictive for activation energies typically used
in numerical calculations. Thus it remains to determine how the finite-activation-
energy solutions agree between the one- and three-step models given this matching.
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Figure 5. (a) Temperature histories for homogeneous explosion of the one-step model with
ε = 1/15 (solid line), and for the three-step model with TB = 1.2 (dashed line), 1.9 (dot-dashed
line) and 2.6 (double-dot-dashed line). (b) Same as (a) but with time rescaled such that f = 0.5
at unit time. Dotted line in (a) marks leading-order large-activation-energy induction time.

It also remains to determine what role TB has in this regime of three-step solutions
for finite activation energies.

Figure 5(a) shows the temperature in the homogeneous explosion for various values
of TB > 1, as well as for the one-step model when ε = εI =1/15, which reveals that
the three-step-model induction time is shorter than in the one-step model. However,
as TB is increased, the three-step homogeneous solution does rapidly converge to the
finite-activation-energy one-step solution. Thus, given the parameter matches (3.19),
for fixed finite ε = εI the three-step model solution can be quantitatively described by
the one-step model in the limit of large TB . However, in figure 5(b), the time has been
rescaled by the induction time, i.e. so that f = 0.5 at a time of unity in each case, and
shows that even for more moderate values of TB , the structures are virtually identical
to the one-step solution on this time scale. Hence this indicates that even for finite
activation energies, the three-step model can be effectively described by the one-step
model with an activation energy which is precisely the chain-initiation activation
energy, but where the definition of k∗ in equations (3.19) needs to be modified to take
into account the dependence of the induction time scale on TB .

For the lowest value of the cross-over temperature (TB =1.2) shown in figure 5,
the induction time is significantly shorter than the one-step value, and also than the
asymptotic value (figure 5a), while the structure of the solution is also quantitatively
different from the one-step solution (figure 5b): for TB = 1.2, the induction zone is
more weakly evolving, and the explosion region is thinner than for the one-step case.
Hence, for this value of TB , a one-step description of the three-step model is breaking
down, and this is due to chain-branching effects becoming important as TB → 1. In
other words, the one-step model only effectively describes the three-step model for
values TB − 1 =O(1) > 0, and becomes invalid as TB approaches unity from above.

3.3. TB near unity

When TB approaches unity from above or below, figures 1 and 2 show that both
thermal and chain-branching effects, and their competition, are important in the
homogeneous explosion. Thus in these cases, all three steps of the model are important,
and its solution cannot be effectively described by reduced models as for the TB −
1 = O(1) cases. Blythe et al. (2005) show that in the large-activation-energy asymptotic
limit, this regime is in fact divided into three sub-regimes, TB =1, TB − 1 = O(εB ln εB)
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Figure 6. Induction time (logarithmic scale) of the homogeneous explosion against inverse
initial temperature for hydrogen–air mixture at density 4.6 kgm−3. Dotted line shows induction
times from the three-step model with parameters fitted to the hydrogen data.

and TB − 1 = O(εB), but that the asymptotic structures in each case do indeed show
that the explosion region has both a thermal and chain-branching nature.

3.4. Matching to detailed chemistry induction times

From the above numerical and asymptotic results for the homogeneous explosion
solutions of the three-step model, we now briefly show how the parameters of the
model can be chosen in order to reproduce the constant-volume induction time data
from detailed chemistry calculations. As an example, figure 6 shows the induction
time as function of the initial temperature in an Arrhenius plot for stoichiometric
hydrogen and air at a density of 4.6 kg m−3, calculated using the method described
in Radulescu (2003). Note that in this section, we will be dealing with dimensional
versions of the parameters.

The data show two almost straight line regions (hence in which the induction
time depends exponentially on 1/T0) joined by a narrow cross-over region around
1/T0 = 0.0007 K−1. Thus the above results indicate that the relevant value of the
cross-over temperature in the three-step model is TB =1430 K. Let us denote the
straight line regions which exist for T0 sufficiently above and below TB as the lower
and upper branches respectively. Since, according to the above asymptotic analysis
for the three-step model, θB and θI are the effective activation temperatures when T0

is sufficiently above or below TB , respectively, their values are given by the slopes of
the lower/upper branches in the Arrhenius plot. For the example shown in figure 6,
this gives θB = 9300 K and θI = 25000 K. From the detailed chemistry calculations,
the adiabatic temperature is Tad ≈ T0 + 1900 K. The rate constant kC can then chosen
so that the induction times on the lower branch are correct when the three-step
model time scale is dimensionalized, and thence TI is fixed by ensuring the induction
time scale on the upper branch also matches the data. For our example, we obtain
kC = 9.8 × 106 s−1, TI = 2431 K.

Figure 6 also shows the numerical induction times from the three-step model
solutions when the above values of the parameters are used. It can be seen
these three-step model results then do indeed match the data very well across the
whole temperature range. The important point to note is that the results of the
asymptotic study allowed us to chose the parameters of the model to match the data
straightforwardly and uniquely without experimentation or multi-dimensional best
fits. Note that for this example, choosing TB as a reference temperature, we obtain
the dimensionless values θB/TB =6.5, θI /TB = 17.6, (γ − 1)Q/TB =1.4, TI/TB = 1.7.
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The standard three-step model can similarly be fitted to induction time data of
hydrocarbons such as acetylene which have similar features to those in hydrogen
mixtures (Radulescu 2003). However, in this case one should take into account that
the branching step may release significant heat (Varatharajan & Williams 2001), and
hence how this alters the structures and asymptotic solutions when TB −1 < 0 needs to
be examined. We intend to do so in the future. Other hydrocarbons, such as methane,
do not show a cross-over effect in the induction time curves: their induction time
appears to have single exponential dependence on 1/T0. Since in these mixtures the
main reaction stage is very short compared to the induction zone, it could be argued
that the three-step model can still be applied, but with a high value of TB , such that
the cross-over temperature is never reached. However, in such a case, the asymptotics
above shows that the model could then be effectively reduced to a simpler one-step
model.

4. Shock initiation
As in previous studies, here we consider one-dimensional shock initiation where

the shock is produced by a constant-velocity piston moving in the x-direction, or
equivalently by the reflection of a weaker shock from a stationary wall. For such a
shock-induced ignition scenario, spatial dependence needs to be reinstated, and the
governing equations are then

Dρ

Dt
+ ρ

∂u

∂x
= 0, ρ

Du

Dt
= −∂p

∂x
,

De

Dt
− p

ρ2

Dρ

Dt
= 0,

Df

Dt
= −RI − RB,

Dy

Dt
= RI + RB − RC,

⎫⎪⎬
⎪⎭ (4.1)

where u is the gas velocity in the x-direction, p = ρT is the pressure and e = T/(γ −1)
is the internal energy. As usual, the results are given in the piston rest frame, i.e.
such that x and u measure distance and speed with respect to the piston face. The
pressure, temperature and density in (4.1) have been non-dimensionalized by using
the values in the initial post-shock state, and velocity is then scaled with

√
p̃s/ρ̃s , so

that distance is scaled with
√

p̃s/ρ̃s/k̃C , where an ‘s’ subscript denotes values in the
initial post-shock state. The initial dimensionless shocked state is thus given by

ps = 1, ρs = 1, Ts = 1, us = 0, fs = 1, ys = 0. (4.2)

If the initial shock Mach number is denoted by M0, then the upstream, quiescent
state (denoted by a zero subscript) is given by

ρ0 =
γ − 1

γ + 1
+

2

(γ + 1)M2
0

, p0 =
γ + 1

γ + 1 + 2γ (M2
0 − 1)

, T0 = p0/ρ0,

u0 = (ρ0 − 1)M0

(
γp0

ρ0

)1/2

, f0 = 1, y0 = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.3)

Here we consider an initial shock Mach number M0 = 1.5, together with the
dimensionless parameter set (3.4), and vary TB , which is now the ratio of the branching
cross-over temperature to the initial shock temperature.

Equations (4.1) are solved using the second-order adaptive-mesh shock-capturing
method described in Sharpe (2002) and Sharpe & Short (2004). The spatial resolution
is chosen to ensure that the finest length scales which can appear in the problem are
fully resolved (Maflahi 2004, 2005).
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Figure 7. (a) Pressure profiles, (b) temperature profiles, (c) fuel mass fraction profiles,
(d) radical (solid lines) and product (dashed lines) mass fraction profiles, (e) pV -diagrams
and (f ) pV -diagrams magnified in the region behind the shock (dotted line is the isentrope
through the initial shock state), at times 0.483, 0.725, 0.966, 1.208 and 1.450. TB = 0.6

4.1. Results

We first consider values of TB in the regime TB − 1 =O(1) < 0. As we have seen in
§ 3.1, the homogeneous-explosion solutions in this case have a explosion region which
is mainly chain branching in nature, and the heat release in these solutions can be well
described by the reduced two-step model. Of course, it does not necessarily follow
that the two-step model can still quantitatively describe the three-step solutions for
dynamic (spatially dependent) problems, such as shock initiation. Whether or not this
is the case is examined below.

Figure 7 shows the evolution for the case TB =0.6, presenting spatial profiles of
pressure, temperature and chemical mass fractions. Analogous to the homogeneous-
explosion solution, initially there is a thermally neutral induction stage, and thus
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there is no gas-dynamics between the piston and the shock, since the pressure
and temperature remain virtually uniform. At t = 0.483 (the homogeneous-explosion
induction time for this TB), the chain-branching explosion begins at the piston, as can
be seen in figures 7(c) and 7(d) which show rapid depletion of fuel and buildup of
chain carriers near x = 0, with virtually no products having formed yet. The chain-
branching explosion region (where f decreases rapidly and y increases to a maximum)
can be seen to subsequently propagate away from the piston, since each particle
reaches its induction time in turn as one moves away from the piston, due to the
passage of the shock. Once the explosion is complete (which occurs first at the piston)
the termination stage begins, producing heat and a build up of radicals. The heat
release produces pressure disturbances, which begin to propagate away from the
piston towards the shock at the sound speed of the undisturbed post-shock state.

The chain-branching explosion region can be shown to propagate away from the
piston subsonically (Sharpe 2002; Dold & Kapila 1991). Indeed, the pressure and
temperature disturbances created in the following exothermic termination region
can be seen to move ahead of the branching region in figure 7. This results in an
increasing pressure (as one moves back from the shock) part of the induction zone
region. Figure 7(a) shows that subsequently a steepening front develops near the head
of the disturbed induction region. By t =1.450, the initial pressure disturbances have
overtaken the shock, increasing its strength slightly, and the compressive front has
steepened to the formation of a very weak secondary shock, although this steepened
region collides with the shock before it has time to develop further.

The pV -diagrams in figures 7(e) and 7(f ) clarify the evolution. In these diagrams,
the profiles consist of the lead shock wave (which remains virtually undisturbed at the
times shown), followed by the disturbed induction region, which has negative slope in
the pV -plane, and which is in turn followed by a thin explosion region within which
both the pressure and density reach a maximum. Subsequent to this, an expansive
termination region in which the pressure and density decrease is apparent. One should
not confuse the compressive disturbed induction zone region of the pV -diagrams with
the exothermic reaction waves (weak detonations) associated with compressive pV -
regions with negative slopes, as identified by Singh & Clarke (1992) and Clarke
& Nikiforakis (1999). Indeed, ahead of the explosion region the reactions are not
exothermic, hence here the energy equation can be replaced with the condition that
the entropy is constant behind the shock, i.e. p = 1/V γ (since p =V =1 just behind
the undisturbed shock). Figure 7(f ) shows that the disturbed induction zone region
does indeed lie along p = 1/V γ (at least while the shock is not significantly disturbed
by the overtaking pressure waves). Hence as particles pass through the induction zone,
they evolve along the isentrope. This can also be shown to be the case for the two-step
model results in Sharpe (2002). The exothermic termination region, which also lies
along a negative slope in the pV diagrams, can however be identified with reaction-
wave behaviour, and since it is expansive it is a fast flame (Singh & Clarke 1992;
Clarke & Nikiforakis 1999). However, the slope of this region also has some curvature,
indicating that it is an unsteady process (Clarke & Nikiforakis 1999). Furthermore,
the magnitude of the slope of the termination region can be seen to increase with
time in figure 7(e), and hence it is accelerating (Clarke & Nikiforakis 1999).

Subsequent to the times shown in figure 7 the compression wave overtakes the
shock, resulting in a rapid strengthening of the shock front. The shock and termination
zone then continue to accelerate, while the induction zone region becomes shorter
due to higher post-shock temperatures. However, the fast-flame termination region
accelerates faster than the shock, so that the final stage of the evolution is a smooth
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Figure 8. (a) Pressure profiles and (b) temperature profiles for the two-step model with
k = 0.476 (corresponding to TB = 0.6) at times 0.483, 0.725, 0.966, 1.208 and 1.450. Also shown
as dotted lines are the three-step solutions with TB = 0.6.

but slow growth of the shock–reaction complex into a fully coupled CJ detonation
wave propagating through the quiescent explosive (Maflahi 2004).

This entire evolution for TB = 0.6 is qualitatively like those described by the two-
step model for values of k of order unity (for example it is intermediate between the
k = 5 and k = 0.25 cases shown in Sharpe 2002). However, given the homogeneous-
explosion parameter matchings between the two- and three-step model, it remains
to determine how well the model solutions agree for the dynamical shock initiation
scenario. For TB = 0.6, the homogeneous explosion matching gives k =0.476. Figure 8
shows the pressure and temperature profiles from a two-step model simulation with
k = 0.476, at the same times as for TB =0.6 in figure 7 (these three-step solutions are
also re-shown in figure 8 as dotted lines for direct comparison).

The results for the two models are in qualitatively good agreement, but there are
noticeable differences. These differences are due to the assumption in the two-step
model that the explosion is instantaneous and purely chain branching. In the full
three-step model, however, while the main part of the explosion region is thin, the
overall explosion zone scale is not negligible. For the homogeneous explosion, this
is apparent from the analytical structure in equations (3.5) to (3.7). In particular,
the induction and explosion regions both evolve on the same time scale, eBt . For
example, from figure 2(a) for TB = 0.6 it can be seen that the time from which the
explosion starts (when y reaches 0.01, say) to when it ends (when y peaks, say) is
indeed comparable to the induction time. Even for TB = 0.6, this finite explosion time
still allows for a small degree of termination (and heat release) within it.

Returning to the shock initiation case, the replacement of the (spatially) distributed
chain-branching explosion region in the three-step case by the instantaneous purely
chain-branching explosion in the two-step model causes several differences from the
three-step model solutions. The main difference is that the three-step model solutions
appear as a ‘diffused’ version of the two-step solutions. For example, a difference can
be seen in the point of maximum pressure that propagates away from the piston.
In the two-step model, this is the point where ξ (x, t) = 1 and hence separates the
induction stage ahead from the main reaction stage behind. Due to the switching on
of the heat release at this point (via the Heaviside function in the main reaction step),
the pressure and temperature gradients are discontinuous here. For the three-step
case, however, because of the distributed explosion region, the pressure gradients are
rapidly changing around the peak, but are nevertheless smooth.
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The two-step model has another gradient discontinuity at the head of the disturbed
induction zone region. This is the point which the sound wave from the first point
of heat release has reached. This first disturbance occurred when the particle at the
piston switched on its heat release stage (at the homogeneous induction time). Since
the heat release was switched on instantaneously in the two-step model, this results
in the gradient discontinuity at the lead sound wave from the termination zone. For
the three-step model, however, since the termination rate begins in a more distributed
fashion near the piston, as can be seen at the first time in the temperature plots in
figure 8(b), the head of the disturbed induction zone region has a smooth structure.
Indeed the initial heat release near the piston causes a ‘foot’ at the head of the
disturbed induction zone at later times. It is this difference in the structures at the head
of the disturbed induction region which causes the main difference between the
solutions. In the two-step model, the flow profile steepens at the gradient discontinuity
marking the head of the disturbed induction zone region. Indeed, by the third time
shown in figure 8, a weak shock has formed here, which can be seen to then rapidly
amplify as it propagates forward. At the last time shown in figure 8, this secondary
shock is about to collide with the leading shock. For the three-step model however, the
smoothed nature of the disturbed induction region results in a less rapid compressive
steepening. In this case, the steepening forms behind the leading ‘foot’ region, but it
only becomes a weak shock just before it collides with the lead shock.

Despite these differences, the two-step solutions are still sufficiently representative
of those of the three-step model that the two-step studies in Sharpe (2002) should
provide useful predictions of how the evolution will depend on TB (via k). For the
two-step model, the evolution is sensitive to k, and hence it will be sensitive to TB

in the three-step case. In particular, the results in Sharpe (2002) predict that, for
increasing TB , corresponding to increasing k, the secondary shock will form closer to
the piston and have more time to amplify before it collides with the leading shock. On
the other hand, Sharpe (2002) predicts that for sufficiently low TB , corresponding to
small values of k, no secondary shock will form and instead the pressure disturbances
couple directly with the leading shock.

These predictions of the dependence of the solution on TB from the two-step study
are confirmed in figures 9 and 10, which shows the evolution for TB = 0.5 and TB = 0.8
(k = 0.101 and 3.22, respectively). In the case of TB = 0.5, it can be seen that heat
release at the piston begins when the shock has moved a smaller distance than for
TB = 0.6, and the disturbances reach and couple with the shock before any significant
steepening can occur, as predicted. For the larger value of TB = 0.8, figure 10 shows
that since now the induction time is of the order of the termination-rate time scale,
the shock has moved quite far by the time that heat release begins at the piston, and
hence the compressive induction zone region does have time to steepen significantly,
and a secondary shock forms long before the disturbances catch up with the leading
shock. However, unlike the two-step case, where the secondary shock always forms
at the head of the disturbed region, in this three-step case the shock forms inside the
smoothed disturbed induction zone region.

However, it should be noted that for TB =0.8, as in the homogeneous explosion,
the assumptions of the two-step model are breaking down. This is because there is
now a significant overlap of branching and termination within the explosion region.
For example, at the first time shown in figure 10, both radicals and a smaller amount
of products can be seen to be building up in a region near the piston. This build up
of products results in a small but significant temperature gradient nearer the piston
(figure 10b), even before the homogeneous induction time. Indeed, the explosion region
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Figure 9. (a) Pressure profiles, (b) temperature profiles, (c) fuel mass fraction profiles,
(d) radical (solid lines) and product (dashed lines) mass fraction profiles and (e) pV -diagrams,
at times 0.101, 0.183, 0.263, 0.345, 0.426 and 0.507. TB = 0.5.

which propagates away from the piston is now initially quite thick, e.g. occurring over
a distance of order unity around the pressure maximum at the second and third times
shown in figure 10. Nevertheless, the explosion region still propagates subsonically, in
qualitative agreement with the two-step predictions, since disturbances can be seen to
propagate ahead of the explosion region into the induction zone. The pV -diagrams
show that while the initial part of the disturbed induction region (as one moves back
from the shock) still lies along an isentrope, there is now a significant compressive
region where the pV -curve departs from the isentrope before the pressure maximum
is reached. Again, this is due to small but significant heat release occurring in the thick
explosion region before the pressure maximum. The main part of the termination
stage is still an expansive fast-flame region in the pV -diagram.

As the secondary shock forms and amplifies, due to the increasing temperatures
behind it, the following explosion region becomes thinner. This is due to the post-shock
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Figure 10. As figure 9 but at times 3.801, 4.752, 5.702, 6.652 and 7.602. TB = 0.8.

temperatures becoming increasingly above the chain-branching crossover temperature,
resulting in the chain-branching rate increasing exponentially rapidly behind the
shock. This can be seen in figure 10(d), where the peak radicals increases with time,
and the overlap between the branching and termination stages decreases, so that the
explosion region is becoming more purely chain branching in nature. The last two
times in the pV diagrams show that both the shock and fast-flame termination region
are accelerating (since their slopes are increasing in figure 10e). However, they do not
accelerate rapidly enough to even begin to approach a full coupling into a strong
CJ detonation (at which point they would lie along a common line in the pV -plane)
before the shocks collide. Subsequently, the shock collision rapidly produces a strong
detonation propagating through the quiescent fuel.

We next consider solutions for the values of TB > 1. As we have seen in § 3.2, the
homogeneous explosions for such values are mainly thermal, and can be effectively
described by the reduced one-step model. Again, it remains to examine whether this
is still the case for the shock-initiation scenario.
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Figure 11. (a) Pressure profiles, (b) temperature profiles, (c) fuel mass fraction profiles, and
(d) radical (solid lines) and product (dashed lines) mass fraction profiles, at times 494.4, 512.7,
531.0, 549.3, 567.6 and 575.4. TB = 1.2.

Sharpe & Short (2004) show the complete one-step evolution in their figures 5,
9 and 10 for the same parameters as used here (Q = 4, γ = 1.4, M0 = 1.5, k∗ = kI

and ε = εI = 1/15). Note that Sharpe & Short (2004) used the high-activation-energy
asymptotic induction time to non-dimensionalize time, and hence their distance and
time-scales need to be multiplied by 917.8 in order to obtain the scales used in this
paper, given the homogeneous explosion parameter matching (3.19). To summarize
their results briefly here, a reaction wave emerges at t = 1390, which largely consists
of a (shockless, supersonic) weak detonation, followed by an unsteady region and
very small fast-flame region, which only occur in the region where z = 1 − f is less
than about 0.2. The unsteady region moves forward through the reaction wave as
it propagates, but a secondary shock forms at t = 1436, x = 165, at a point inside
the reaction zone where z ≈ 0.6. The shock and reaction zone then rapidly couple
into a strong detonation propagating though the shocked material by about t = 1520,
x = 410.

Figures 11 and 12 show the evolution for the three-step model with TB = 1.2. Figure
11 shows the evolution during the initial induction stage. As in the homogeneous
explosion in this case, radicals produced by the initiation step are rapidly converted
directly into products and heat by the termination step, with the amount of radicals
initially remaining virtually zero everywhere. In the shock-initiation case, since the
material nearer the piston has been shocked (hence releasing heat) longer than that
nearer the shock, this produces gas-dynamical evolution, which results in a weak
gradient in pressure and temperature, just as for the one-step model solutions. The
heat release also produces a very weak increase in the shock strength (cf. Sharpe
& Short 2004). Only once thermal runaway begins at the piston at t = 575, and the
temperature approaches TB there, does a small degree of chain branching begin to
occur (figure 11d), analogous to the homogeneous explosion.
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Figure 12. (a) Pressure profiles, (b) temperature profiles, (c) fuel mass fraction profiles, (d)
radical (solid lines) and product (dashed lines) mass fraction profiles (all profiles shown in a
post-leading-shock region), (e) pf -diagrams, (f ) pz-diagrams and (g) pV -diagrams, at times
590.5, 592.3, 594.1, 596.0 and 597.8. TB = 1.2. Dotted lines are loci of the pressure maximum
from the one-step model solutions.

Subsequent to the explosion at the piston, a forward moving reaction wave emerges
as particles further from the piston subsequently explode in turn. In this case, the
reaction wave emerges at around t =580, much earlier than for the one-step case,
as expected from the homogeneous result in figure 5. Figure 12 shows the initial
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evolution after the emergence of the reaction wave. At this stage, starting at the
shock and moving back to the piston, the solution consists of an induction region
through which pressure and temperature increase and the fuel fraction decreases (the
product fraction increases), which is then followed by a rapid, but smooth, increase
of the pressure to a maximum. The pV -diagrams in figure 12(g) reveal that, since
this compressive reaction wave lies mostly along a straight line with negative slope, it
is in fact part of a supersonic weak detonation, and it is decelerating since the slope
decreases with time (Clarke & Nikiforakis 1999). Figure 12(g) also shows that the
region around the pressure maximum is highly curved in the pV -diagrams and hence
this is an unsteady region. This unsteady region is in turn followed by an expansion
wave.

Figures 12(e) and 12(f ) show the solutions in pressure–fuel fraction and pressure–
product fraction planes, which help to reveal where various features lie within the
reaction zone. The pf -diagrams show that, initially, the fuel is depleted within the
weak detonation: the pressure increases as f decreases and the pressure maximum
occurs only once f is nearly zero. Hence, as can predicted by the differences in the
homogeneous structures in figure 5(b) (Sharpe & Short 2004), for TB = 1.2 the weak
detonation consists more nearly of the entire explosion region than for the one-step
model. Indeed, figure 12(e) also shows as a dotted line the locus of the pressure
maximum in the pf -plane (which is a rough measure of the end of the weak
detonation part of the reaction wave) for the one-step model solution. As can be
seen, for TB = 1.2, the rear of the weak detonation lies significantly further towards
the completely burnt fuel state, f = 0, than for the one-step model.

Figure 12(d) shows that the nature of the reactions in the weak detonation in
the three-step solution is different to that of the purely thermal one-step model, in
that a moderate, but increasing, amount of chain branching occurs within the weak
detonation. Indeed, it is also important to note that for the homogeneous explosion
with TB =1.2 shown in figure 5, the validity of the one-step description is beginning to
break down, since chain-branching effects in the explosion are becoming significant.
The maximum in the radical mass fraction occurs within the explosion region, before
the pressure maximum is reached. After the fuel is completely depleted, a small but
significant amount of radicals still exists, and hence the heat release is not completed
within the explosion region, unlike in the one-step model case. Instead, there is small
following termination region in which the radicals are depleted. This can be seen
best in the pz-diagram in figure 12(f ), which shows that, although the fuel is almost
completely depleted there, the pressure maximum occurs while the composition is
still not all products. Thus the unsteady region around the pressure maximum is a
combustion region in which heat is still being released. This region moves forward
away from the end of the reaction zone in figure 12(f ), so that the final part of
the heat release then begins to occur within the expansive region, which can be
identified as part of a quasi-steady fast flame from the pV -diagrams (Clarke &
Nikiforakis 1999; Singh & Clarke 1992). The pz-diagrams, which show the structure
of the complete exothermic reaction zone, rather than just the explosion region as in
the pf -diagrams, are in fact remarkably similar to the pz-diagrams for the one-step
solutions in Sharpe & Short (2004). Thus, for the purpose of a more direct measure
of comparison, the locus of the pressure maximum from the one-step calculations is
also shown in figure 12(f ). This can be seen to be in quantitative agreement with
the TB = 1.2 three-step model solution. Similarly, the pV -evolution in figure 12(g) is
also in quantitative agreement with that for the one-step solution (again, the locus
of the pressure maximum from the one-step calculation is also shown). The pressure
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and temperature profiles in figures 12(a) and 12(b), are also in qualitative agreement
with the results in Sharpe & Short (2004), although the time and distance scales are
markedly different, which is to be expected given the difference in the homogeneous
induction times on the termination time scale.

By the final time shown in figure 12, a secondary shock has formed and begun to
amplify and move through the weak detonation ahead of it, transforming it into a
following fast flame. The shock forms at about t = 597, x = 62, which is much earlier
and closer to the piston than for the one-step results in Sharpe & Short (2004) on the
time scale used here. However, figure 12(f ) shows that the secondary shock forms
when z ≈ 0.6, again in quantitative agreement with the shock formation point in the
one-step model. It is important to note that, for the one-step model, different shock
initiation solutions are classified according to how the solutions evolve in the pV -
and pz-diagrams, and for the three-step model these are found to be insensitive to
TB as it is increased. Hence in these terms, the evolutionary mechanisms of the three-
step gas-dynamical evolution are very well predicted by the one-step model (which
represents the three-step model in the limit of large TB) even when TB is as low as
1.2. While the timings differ considerably on the termination-rate time scale, as TB

increases, these times also rapidly tend to those of the one-step model. In summary,
it appears that, while the one-step model cannot describe the details of the chemistry,
it does effectively capture the way in which the heat release and gas-dynamics couple
in the three-step model even for TB = 1.2, at least up to the point of secondary shock
formation.

However, once the secondary shock has formed, it then rapidly amplifies. If
the secondary shock temperature subsequently reaches and exceeds TB , then chain
branching will become dominant over chain termination in the reaction zone behind
the secondary shock. Hence at this point, the evolution may be expected to become
quantitatively different to that in the one-step model. Figure 13 shows the evolution
subsequent to the secondary shock formation for TB = 1.2. The rapid growth of the
shock as it propagates through the disturbed induction region behind the leading
shock can be seen. Figure 13(d) shows that chain branching does indeed rapidly
become more dominant in the following reaction zone. As the secondary shock
temperature increases, the remaining part of the induction zone behind it becomes
shorter and the subsequent explosion becomes more chain branching in nature, as can
be seen by the increasing radical peak and the overlap with the following termination
stage becoming less pronounced.

The loci of the maximum pressure (which occurs at the secondary shock) in the
one-step model solution is also shown for direct comparison in figure 13(e–g). As
expected, the three-step solution does become quantitatively different from that of
the one-step model at this stage. In particular, the shock accelerates through the
partially reacted material ahead of it more quickly in the three-step case. This can
be seen from figure 13(f ), which shows that when the maximum (secondary shock)
pressure has reached a given value, the shocked material is less burnt (z is smaller)
in the three-step case compared to the one-step solution. Furthermore, for a given
value of the maximum pressure, the pressure just ahead of the secondary shock is
slightly lower in the three-step case than in the one-step case. Thus the secondary
shock evolves to a strong detonation along different loci in the pV -plane (figure 13g).

Despite these differences, the pV -, pf - and pz-diagrams in figure 13 show that this
stage of the evolution is still in very good qualitative agreement with the one-step
solutions. In particular, in both cases the secondary shock very rapidly accelerates
through the remaining portion of the weak detonation ahead of it, converting the
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Figure 13. As figure 12 but at times 599.7, 608.8, 618.0, 627.1 and 636.3 (pV -diagram not
shown at t = 627.1 for clarity). TB =1.2.
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Figure 14. (a) Pressure profiles, (b) temperature profiles, (c) fuel mass fraction profiles,
(d) radical (solid lines) and product (dashed lines) mass fraction profiles at times 34.6, 35.3,
36.0, 36.7, 37.4, 38.1 and 38.8. TB =1.0.

weak detonation into a quasi-steady fast flame behind it. The shock thus
moves into a less and less burnt state, i.e. f → 1, z → 0 at the shock. Also, the fast
flame accelerates with the shock (its slope increases in the pV -plane), but faster than
the shock, such that they couple into a fully formed strong detonation (they begin
to lie along a common straight line in the pV -plane), for both models. As TB is
increased, this stage of the evolution also becomes in better quantitative agreement
with the one-step model solutions.

The remaining cases left to consider are those in which TB is close to unity. In
these cases, it is expected from the homogeneous explosion that both chain branching
and termination effects will be important from the outset, and that the explosion
region which emerges from the piston will have a mixed chain-branching/thermal
nature. However, it is unclear at this stage whether this explosion will propagate
away from the piston subsonically as for TB − 1 = O(1) < 0 or supersonically as for
TB − 1 = O(1) > 0.

Figures 14 and 15 show the shock-induced ignition evolution when TB = 1. The
initial induction stage evolution is shown in figure 14. At this stage, the initiation
step slowly produces radicals which leads to both branching and termination.
Initially, analogous to the homogeneous explosion structure in figure 2, termination is
somewhat more dominant in the induction zone, with more products being produced
at a given spatial position than radicals. However, as the time of explosion at the
piston face is approached and the temperature begins to rapidly increase, radicals
begin to build up more rapidly there. Note that, again similar to the homogeneous-
explosion solutions, the explosion at the piston occurs much earlier than for TB = 1.2
(t = 39 as compared to t = 575). However, even taking into account this difference
in timings by rescaling the time and length scales using the homogeneous induction
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times in both cases (e.g. as was done in figure 5b), a number of differences in the
induction stage solutions prior to the explosion at the piston are apparent when
comparing figure 14 with figure 11 for TB = 1.2,

These differences are due to the fact that a significant amount of radicals is
produced in the induction stage for TB = 1.0 (as compared to almost none in the
TB = 1.2 case) and hence less heat is produced by the competing termination step for
a given amount of consumption of the fuel, i.e. the induction stage is less thermal
for TB =1.0. First, this results in the pressures and temperatures at the piston being
lower for TB =1.0 when f has reached a given value there. Secondly, again analogous
to the differences in the homogeneous-explosion solution structures, this results in
the temperature gradient behind the shock being much smaller for TB = 1.0, and
also in a smaller increase in the leading shock strength by the time of explosion at
the piston. Indeed, for a given value of f at the piston, the fuel fraction profiles
for TB =1.0 are initially much more weakly decreasing as one moves back from the
shock than for TB = 1.2, but in both cases f then decreases rapidly in a region close
to the piston face as the explosion time there is approached. Finally, although in both
cases the gas-dynamical evolution delays the explosion at the piston compared to
the homogeneous explosion induction time, the delay is smaller for TB = 1.0 (f = 0.5
at the piston occurs at a time 12% later than the homogeneous explosion time for
TB = 1.0, compared to a time 22% later for TB = 1.2).

Figure 15 shows the emergence of the reaction wave and the subsequent evolution.
The pV -diagrams (figure 15g) show that, as for larger TB values and the one-step
model, the lead part of the reaction wave initially propagates at infinite speed, since the
slope is vertical at the first time shown (Clarke & Nikiforakis 1999). This compressive
part of the reaction wave is therefore a weak detonation, and it rapidly decelerates
since its slope decreases in the pV -plane. The pf -diagrams in figure 15(e) show that
as for the TB = 1.2 case, this weak detonation part of the wave occurs within the
explosion region, since the pressure maximum initially occurs only once f is close to
zero. However, now there is a significant amount of chain branching within the
weak detonation. The radical peak seen in figure 15(d) occurs ahead of the pressure
maximum, and this peak also increases with time as the temperatures reached within
the explosion region increase. There is thus a significant termination region after the
explosion region, in which the radicals are converted into products and heat. This
can be more clearly seen in the pz-diagrams (figure 15f ). For TB =1.0 the pressure
maximum initially occurs at around z =0.5, i.e. when the composition is significantly
further from being all products than for TB =1.2. The pf - and pV -diagrams hence
show that now only a small part of the complete exothermic reaction zone consists of
the weak detonation region, with the majority occurring in the unsteady combustion
region and a following quasi-steady fast-flame part. The pressure maximum moves
forward as the compressive region ahead of it steepens, until a secondary shock forms
at about x = 9, at a point inside the reaction zone where z ≈ 0.17. Hence the secondary
shock forms much further towards the front of the reaction wave than for TB = 1.2
or in the one-step model solution.

Another difference between the TB =1.0 results and those for higher values is that
for TB = 1.2 and the one-step model, the weak detonation propagates through an
unsteady induction zone region. This unsteady induction zone is represented by the
regions of positive slope which occur just after the leading shock in the pV -diagrams
of figure 12(g) and in figure 5 of Sharpe & Short (2004). For TB = 1.0, however,
the unsteady induction region is much diminished. Indeed, in figure 15(g), the weak
detonation begins virtually at the post-shock state. Thus in this case, the weak
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Figure 15. (a) Pressure profiles, (b) temperature profiles, (c) fuel mass fraction profiles,
(d) radical (solid lines) and product (dashed lines) mass fraction profiles (all profiles shown in
a post-leading-shock region), (e) pf -diagrams, (f ) pz-diagrams and (g) pV -diagrams, at times
40.2, 40.9, 41.6, 42.3, 43.0, 43.7. TB = 1.0.
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detonation propagates through a much more uniform region than in the larger
TB cases. This is due to the much weaker evolution of the temperature/pressure
gradients behind the shock in the induction stage of the evolution for TB = 1.0.

The TB = 1.0 evolution, with the smaller weak detonation part of the reaction
zone and the secondary shock forming nearer the front of the reaction wave, is in
fact reminiscent of one-step solutions when a lower value of ε is used (Sharpe &
Short 2004). However, there is a major difference, in that the reaction wave evolution
occurs much further behind the leading shock for the TB = 1.0 case than for the
less temperature sensitive one-step model solutions. The result is that, once the
secondary shock forms in the three-step model, it strengthens sufficiently to reach a
fully developed strong detonation before it collides with the leading shock, while in
the lower ε one-step results, the secondary shock forms quite near the leading shock,
and does not have time to strengthen significantly before the shocks collide (cf. the
ε = 1/10 case in figure 7 of Sharpe & Short 2004).

5. Conclusions
Both spatially homogeneous explosion and initiation of reactive materials by a

shock wave have been investigated using a standard three-step chain-branching
chemistry model. For homogeneous explosions, it was shown that the three-step
model can be effectively described by the widely used simpler (reduced) one-step and
two-step models, provided the ratio of the chain-branching cross-over temperature
to the initial temperature, TB , is within certain regimes. The two-step model, which
assumes a purely chain-branching explosion region, is valid provided TB is sufficiently
below unity, while the purely thermal one-step model can effectively describe the three-
step homogeneous explosion solutions provided TB is sufficiently greater than unity.
When TB is close to unity, all the reaction steps in the three-step model are important,
and hence the solutions cannot be described by a reduced model. Furthermore, in the
relevant regimes, it was shown how the parameters of the reduced one-step or two-
step models are related to those of the three-step model in order to obtain a match of
the homogeneous explosion structures. This parameter identification helps to reveal
the crucial role of the cross-over temperature in chain-branching chemistry, in that
not only does the reaction structure change dramatically as TB is varied around unity,
but also the effective activation energy changes from that of the chain-branching step
to that of the initiation step as TB is increased through unity. Hence the temperature
sensitivity of the reaction also changes dramatically.

In the shock initiation scenario, for an initial shock temperature sufficiently above
the branching cross-over temperature, the three-step model results are in qualitative
agreement with those of the two-step model. For example, the chain-branching
explosion region is found to propagate away from the piston subsonically, so that
disturbances from the exothermic termination region propagate ahead of the explosion
into the induction zone. Also in agreement with the two-step model predictions, a
secondary shock only forms if TB is sufficiently large, otherwise the exothermic region
couples directly with the leading shock. However, unlike the homogeneous-explosion
scenario, the three-step solutions are not in quantitative agreement with those of the
two-step model. The two-step model underpredicts the value of TB at which secondary
shock formation first occurs, and also the spatial position where the secondary shock
forms in the solution, if it does occur. These differences are due to the invalidity of the
assumption in the two-step model that the explosion region occurs instantaneously
and is purely chain-branching in character. Furthermore, the long thermally neutral
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induction zone regimes considered in previous studies using the two-step model are
found to be unachievable in the context of the three-step model.

For an initial shock temperature sufficiently below the chain-branching cross-over
temperature, as predicted by the homogeneous explosion study, it is found that
the one-step reaction model effectively captures the way the heat release couples
with the gas-dynamics in the three-step model. In particular, in agreement with the
previous one-step model studies, the evolution begins with a thermal induction stage,
subsequent to which a supersonic but decelerating reaction wave emerges. The length
and time scales over which the evolution occurs decreases with TB , but even for TB

only moderately above unity, the evolutionary mechanisms are found to be described
well by the one-step model, in terms of the composition of the reaction wave as weak
detonation, unsteady combustion, and fast-flame parts.

For initial shock temperatures closer to the branching cross-over temperature,
both chain-branching and thermal effects, and the competition between them, are
important from the outset. As TB is increased to unity from below, the speed at
which the explosion region emerges from the piston face changes from subsonic to
supersonic. For TB equal to or just above unity it was found that the reaction wave
emerges with an initially infinite speed but rapidly decelerates, as in the one-step
model, and hence the wave begins as a weak detonation. However, new behaviour is
observed for the three-step model, in that a significant amount of chain branching
occurs within the weak detonation part of the reaction wave. As TB is decreased
towards unity, the portion of the reaction wave which consists of the weak detonation
part shrinks, and the secondary shock forms closer to the front of the wave. This
dependence on TB is somewhat like the effect of decreasing the activation energy in
the one-step model.
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